e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Remote Sensing for Detecting and Mapping Whitefly (Bemisia tabaci) Infestations

en
Abstract

Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding more and more practical applications for the detection and management of insect pests, including sweetpotato whitefly, Bemisia tabaci (Gennadius). This chapter begins with an extended overview of remote sensing principles and systems that can be used for entomological studies. Properties and behavior of electromagnetic energy, major divisions of the electromagnetic spectrum (i.e., ultraviolet, visible, infrared and microwave), and the interactions between radiation and ground targets are discussed. Major types of remote sensing systems are described, including ground-based spectroradiometers, aerial photographic cameras, airborne digital multispectral and hyperspectral imaging systems, and moderate and high resolution satellite imaging systems. The second part of the chapter provides a brief review on the use of remote sensing for detecting whitefly infestations and presents an application example to illustrate how remote sensing can be integrated with GPS and GIS technologies for detecting and mapping whitefly infestations in cotton fields. The methodologies for ground reflectance and airborne image acquisition and for the integration of image data with GPS and GIS are discussed.

en
Year
2011
en
Country
  • US
Organization
  • USDA_ARS_Agr_Res_Serv (US)
Data keywords
  • information system
  • information technology
en
Agriculture keywords
  • agriculture
en
Data topic
  • sensors
en
SO
WHITEFLY, BEMISIA TABACI (HOMOPTERA: ALEYRODIDAE) INTERACTION WITH GEMINIVIRUS-INFECTED HOST PLANTS: BEMISIA TABACI, HOST PLANTS AND GEMINIVIRUSES
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • USDA_ARS_Agr_Res_Serv (US)
uid:/0H0N8T50
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.