e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain)

en
Abstract

Watershed management decisions need robust methods, which allow an accurate predictive modeling of pollutant occurrences. Random Forest (RF) is a powerful machine learning data driven method that is rarely used in water resources studies, and thus has not been evaluated thoroughly in this field, when compared to more conventional pattern recognition techniques key advantages of RF include: its non-parametric nature; high predictive accuracy; and capability to determine variable importance. This last characteristic can be used to better understand the individual role and the combined effect of explanatory variables in both protecting and exposing groundwater from and to a pollutant. In this paper, the performance of the RF regression for predictive modeling of nitrate pollution is explored, based on intrinsic and specific vulnerability assessment of the Vega de Granada aquifer. The applicability of this new machine learning technique is demonstrated in an agriculture-dominated area where nitrate concentrations in groundwater can exceed the trigger value of 50 mg/L, at many locations. A comprehensive GIS database of twenty-four parameters related to intrinsic hydrogeologic proprieties, driving forces, remotely sensed variables and physical-chemical variables measured in "situ", were used as inputs to build different predictive models of nitrate pollution. RF measures of importance were also used to define the most significant predictors of nitrate pollution in groundwater, allowing the establishment of the pollution sources (pressures). The potential of RF for generating a vulnerability map to nitrate pollution is assessed considering multiple criteria related to variations in the algorithm parameters and the accuracy of the maps. The performance of the RF is also evaluated in comparison to the logistic regression (LR) method using different efficiency measures to ensure their generalization ability. Prediction results show the ability of RF to build accurate models with strong predictive capabilities. (c) 2014 Elsevier B.V. All rights reserved.

en
Year
2014
en
Country
  • GB
  • PT
  • ES
Organization
  • Univ_Southampton (UK)
  • Univ_Granada_UGR (ES)
Data keywords
  • machine learning
en
Agriculture keywords
  • agriculture
en
Data topic
  • big data
  • modeling
en
SO
SCIENCE OF THE TOTAL ENVIRONMENT
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/13GXMQCC
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.