e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Analysis of the bovine neutrophil transcriptome during glucocorticoid treatment

en
Abstract

The objective of this study was to characterize a large portion of the bovine neutrophil transcriptome following treatment with the antiinflammatory glucocorticoid dexamethasone (Dex). Total RNA was isolated from blood neutrophils of healthy cattle (5 castrated male Holsteins) immediately following cell purification (0 h) or after ex vivo aging for 4 h with or without added Dex. Additional neutrophils were cotreated with a glucocorticoid receptor (GR) antagonist (RU486) and Dex for 4 h. RNA was amplified, dye labeled (Cy3 or Cy5), and hybridized to a series of National Bovine Functional Genomics Consortium (NBFGC) microarrays. LOWESS data normalization followed by mixture model analyses showed that 11.15% of the spotted NBFGC cDNAs (2,036/18,263) were expressed in 4-h (untreated) neutrophils. Subsequent two-step mixed-model analysis detected (P <= 0.05) 1,109 differentially expressed genes, of which contrast analysis indicated those that were independently responsive to aging (1,064), Dex (502), RU486 + Dex (141), or RU486 (357). In silico analysis revealed that 416 of the differentially expressed genes are unknown, 59 did not cluster well based on known function, and 634 clustered into 20 ontological categories. Independent validation of differential expression was done for 14 of the putatively Dex-responsive genes across these categories. Results showed that Dex induced rapid translocation of GR into the neutrophil nucleus and signaled dramatic alterations in expression of genes that delay apoptosis, enhance bactericidal activity, and promote tissue remodeling without inflammation or fibrosis. Thus these findings revealed hitherto unappreciated plasticity of blood neutrophils and potentially novel anti-inflammatory/ wound-healing actions of glucocorticoids.

en
Year
2006
en
Country
  • US
Organization
  • Michigan_State_Univ (US)
Data keywords
  • ontology
en
Agriculture keywords
  • cattle
en
Data topic
  • modeling
en
SO
PHYSIOLOGICAL GENOMICS
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Michigan_State_Univ (US)
uid:/2XG6V1RK
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.