e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Comparative analysis and characterization of expressed sequence tags in gilthead sea bream (Sparus aurata) liver and embryos

en
Abstract

The gilthead sea bream (Sparus aurata) is one of the main European aquaculture products and a prospective model species for the Sparidae, which includes several other commercially important species. Future selective breeding of aquaculture stocks will be heavily underpinned by molecular genetic techniques, especially by marker-assisted selection (MAS). Gene marker resources in marine fish species, however, lag behind those of other agricultural animals, and only scanty information exists about the genetic source of phenotypic variation and the identity of quantitative trait loci (QTL). In order to develop molecular resources in gilthead sea bream, complementary DNA libraries were constructed from liver and mixed embryo and larval stages by unidirectional cloning. A long-read expressed sequence tag (EST) database was generated, containing 1394 cDNA clones representing 852 unique cDNA sequence-reads. Tissue-specific patterns of gene expression were determined when grouped using the proposal for characterizing cellular component put forward by the Gene Ontology consortium. Transcripts encoding cytoskeletal proteins were most abundant in the embryonic/larval library, while the most abundant transcripts in the liver library encoded secreted and extracellular proteins. Of both libraries, 505 clones were sequenced in both orientations (5' and 3' end sequencing), where 226 clones were determined as full-length sequence reads. Cluster analysis of 3'end-sequenced clones from both libraries revealed that alternative polyadenylation signals were utilized, although no evidence of alternative splicing was found. We report for the first time for gilthead sea bream or any sparid a transcriptional analysis of two tissues and briefly consider the utility of ESTs for characterizing tissue-specific expression profiles. (C) 2004 Elsevier B.V. All rights reserved.

en
Year
2005
en
Country
  • DE
  • GR
  • PT
Organization
  • Max_Planck_Soc (DE)
  • HCMR_Hellenic_Ctr_Marine_Research (GR)
Data keywords
  • ontology
en
Agriculture keywords
  • agriculture
en
Data topic
  • big data
  • information systems
  • modeling
  • semantics
en
SO
AQUACULTURE
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/6JMR9RXB
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.