e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

The Differential Expression of Immune Genes between Water Buffalo and Yellow Cattle Determines Species-Specific Susceptibility to Schistosoma japonicum Infection

en
Abstract

Water buffalo are less susceptible to Schistosoma japonicum infection than yellow cattle. The factors that affect such differences in susceptibility remain unknown. A Bos taurus genome-wide gene chip was used to analyze gene expression profiles in the peripheral blood of water buffalo and yellow cattle pre- and post-infection with S. japonicum. This study showed that most of the identified differentially expressed genes(DEGs) between water buffalo and yellow cattle pre- and post-infection were involved in immune-related processes, and the expression level of immune genes was lower in water buffalo. The unique DEGs (390) in yellow cattle were mainly associated with inflammation pathways, while the unique DEGs (2,114) in water buffalo were mainly associated with immune-related factors. The 83 common DEGs may be the essential response genes during S. japonicum infection, the highest two gene ontology (GO) functions were associated with the regulation of fibrinolysis. The pathway enrichment analysis showed that the DEGs constituted similar immune-related pathways pre- and post-infection between the two hosts. This first analysis of the transcriptional profiles of natural hosts has enabled us to gain new insights into the mechanisms that govern their susceptibility or resistance to S. japonicum infections.

en
Year
2015
en
Country
  • CN
  • US
Organization
  • CAAS_China_Acad_Agr_Sci (CN)
  • Brown_Univ (US)
Data keywords
  • ontology
en
Agriculture keywords
  • cattle
en
Data topic
  • big data
  • semantics
en
SO
PLOS ONE
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • CAAS_China_Acad_Agr_Sci (CN)
uid:/8N2V844S
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.