e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Gene expression profiling in shoot apical meristem of Gossypium hirsutum

en
Abstract

Early maturity is a particularly important agronomic trait for cotton breeding in China and is determined by many morphological and phenological traits. The time of floral initiation is one of most important factors related to early maturation of cotton. The aim of this study was to identify differentially expressed (DE) genes related to floral initiation using the Arabidopsis thaliana GeneChipA (R) system on the shoot apical meristems (SAMs) of an early-maturing cotton cultivar. Compared with SAMs at 10 days, 365 genes were differentially expressed in the SAMs at 20 days. Of these, 210 and 155 transcripts were up- and down- regulated, respectively. The results of Gene Ontology (GO) annotation indicated that most genes fell into the four largest functional groups: metabolism, transposable elements, protein binding or cofactor requirements, and protein fate. These groups constituted 18.9, 11.8, 12.8 and 6.8% of the total DE genes, respectively. Many DE genes were identified, including those encoding the transcription factors SOC1-like floral activator MADS4, B3-domain containing transcription factor, MYB2, MYB85 and GHMADS-1. Our research found that the B3-domain containing transcription factor was similar to Arabidopsis genes encoding auxin response factor 36 and VERNALIZATION 1 (VRN1) and was one of 155 down-regulated 'Apex-unique' transcripts. The B3-domain containing transcription factor was 1128 bp long and was named GhV1 (GenBank accession No. GU929695). The induction of the transcripts we identified in the cotton SAM after 10 days of SD revealed that the transition to reproductive development occurred at this particular time point. These results allowed for a detailed description of temporal gene expression changes in the cotton SAM as it undergoes the floral initiation process.

en
Year
2015
en
Country
  • CN
  • US
Organization
  • CAAS_China_Acad_Agr_Sci (CN)
  • New_Mexico_State_Univ (US)
Data keywords
  • ontology
en
Agriculture keywords
    en
    Data topic
    • information systems
    • semantics
    en
    SO
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
    • CAAS_China_Acad_Agr_Sci (CN)
    uid:/DL096MSN
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.