e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Predicting Solar Generation from Weather Forecasts Using Machine Learning

en
Abstract

A key goal of smart grid initiatives is significantly increasing the fraction of grid energy contributed by renewables. One challenge with integrating renewables into the grid is that their power generation is intermittent and uncontrollable. Thus, predicting future renewable generation is important, since the grid must dispatch generators to satisfy demand as generation varies. While manually developing sophisticated prediction models may be feasible for large-scale solar farms, developing them for distributed generation at millions of homes throughout the grid is a challenging problem. To address the problem, in this paper, we explore automatically creating site-specific prediction models for solar power generation from National Weather Service ( NWS) weather forecasts using machine learning techniques. We compare multiple regression techniques for generating prediction models, including linear least squares and support vector machines using multiple kernel functions. We evaluate the accuracy of each model using historical NWS forecasts and solar intensity readings from a weather station deployment for nearly a year. Our results show that SVM-based prediction models built using seven distinct weather forecast metrics are 27% more accurate for our site than existing forecast-based models.

en
Year
2011
en
Country
  • US
Organization
  • Univ_Massachusetts_Amherst (US)
Data keywords
  • machine learning
en
Agriculture keywords
  • farm
en
Data topic
  • big data
  • modeling
en
SO
2011 IEEE INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM)
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/F81SD87B
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.