e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Modulation of the maternal immune system by the pre-implantation embryo

en
Abstract

Background: A large proportion of pregnancy losses occur during the pre-implantation period, when the developing embryo is elongating rapidly and signalling its presence to the maternal system. The molecular mechanisms that prevent luteolysis and support embryo survival within the maternal environment are not well understood. To gain a more complete picture of these molecular events, genome-wide transcriptional profiles of reproductive day 17 endometrial tissue were determined in pregnant and cyclic Holstein-Friesian dairy cattle. Results: Microarray analyses revealed 1,839 and 1,189 differentially expressed transcripts between pregnant and cyclic animals (with >= 1.5 fold change in expression; P-value < 0.05, MTC Benjamini-Hochberg) in caruncular and intercaruncular endometrium respectively. Gene ontology and biological pathway analysis of differentially expressed genes revealed enrichment for genes involved in interferon signalling and modulation of the immune response in pregnant animals. Conclusion: The maternal immune system actively surveys the uterine environment during early pregnancy. The embryo modulates this response inducing the expression of endometrial molecules that suppress the immune response and promote maternal tolerance to the embryo. During this period of local immune suppression, genes of the innate immune response (in particular, antimicrobial genes) may function to protect the uterus against infection.

en
Year
2010
en
Country
  • NZ
  • AU
Organization
  • DairyNZ_Ltd (NZ)
  • Univ_Queensland (AU)
  • Univ_Auckland (NZ)
Data keywords
  • ontology
en
Agriculture keywords
  • cattle
en
Data topic
  • big data
  • information systems
  • semantics
en
SO
BMC GENOMICS
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Univ_Queensland (AU)
uid:/G4G0F1P0
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.