e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

MULTIPLE INSTANCE AND CONTEXT DEPENDENT LEARNING IN HYPERSPECTRAL DATA

en
Abstract

Hyperspectral imaging (HSI) is a powerful tool for various remote sensing tasks including agricultural modeling and landmine/unexploded ordnance clearance. Although the application of standard supervised learning techniques to HSI data has previously been explored, several aspects of hyperspectral data collection and ground truth labeling make some of the assumptions underlying standard machine learning techniques invalid. For example, HSI is highly dependent upon local environmental conditions, and pixel-by-pixel labels for HSI data are often not available. As a result, data from hyperspectral sensing under various scenarios is not typically i.i.d., and correct data labels must be inferred from training data while learning decision boundaries. In this work we explore two possible solutions to these problems: context-dependent learning for overcoming variations between collections, and multiple instance learning for simultaneously inferring local target labels and global target decision boundaries. Results are compared to standard logistic discriminant classification approaches.

en
Year
2009
en
Country
  • US
Organization
  • Duke_Univ (US)
Data keywords
  • machine learning
  • agricultural model
en
Agriculture keywords
  • agriculture
en
Data topic
  • big data
  • information systems
  • modeling
  • sensors
en
SO
2009 FIRST WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/H8CDGF3G
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.