e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Genes regulating lipid and protein metabolism are highly expressed in mammary gland of lactating dairy goats

en
Abstract

Dairy goats serve as an important source of milk and also fulfill agricultural and economic roles in developing countries. Understanding the genetic background of goat mammary gland is important for research on the regulatory mechanisms controlling tissue function and the synthesis of milk components. We collected tissue at four different stages of goat mammary gland development and generated approximately 25 GB of data from Illumina de novo RNA sequencing. The combined reads were assembled into 51,361 unigenes, and approximately 60.07 % of the unigenes had homology to other proteins in the NCBI non-redundant protein database (NR). Functional classification through eukaryotic Ortholog Groups of Protein (KOG), gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the unigenes from goat mammary glands are involved in a wide range of biological processes and metabolic pathways, including lipid metabolism and lactose metabolism. The results of qPCR revealed that genes encoding FABP3, FASN, SCD, PLIN2, whey proteins (LALBA and BLG), and caseins (CSN1S1, CSN1S2, CSN2 and CSN3) at 100 and 310 days postpartum increased significantly compared with the non-lactating period. In addition to their role in lipid and protein synthesis, the higher expression at 310 days postpartum could contribute to mammary cell turnover during pregnancy. In conclusion, this is the first study to characterize the complete transcriptome of goat mammary glands and constitutes a comprehensive genomic resource available for further studies of ruminant lactation.

en
Year
2015
en
Country
  • CN
  • US
Organization
  • NW_Agr_&_Forest_Univ (CN)
  • Univ_Illinois_Urbana_Champaign (US)
Data keywords
  • ontology
en
Agriculture keywords
  • agriculture
en
Data topic
  • big data
  • information systems
  • modeling
  • semantics
en
SO
FUNCTIONAL & INTEGRATIVE GENOMICS
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • NW_Agr_&_Forest_Univ (CN)
  • Univ_Illinois_Urbana_Champaign (US)
uid:/P1GWGDF7
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.