e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

RESTORING SOIL FERTILITY IN SUB-SAHARA AFRICA

en
Abstract

Sub-Sahara Africa can overcome the soil fertility depletion that has resulted from decades of nutrient mining by small-scale farmers and threatens the region's food security. Nutrient restoration is now technically feasible because its mechanisms are understood and the rural development community is alerted to this need. Rapid and inexpensive approaches of diagnosing soil fertility limitations are also becoming available and information generated is becoming systematically applied. For example, the recently initiated Africa Soil Information Service project aims at evaluating, mapping, and monitoring Africa's soil qualities for better targeting of soil fertility management technologies to improve crop yields while enhancing the environment. Practical knowledge is available on nutrient management in small-scale farming systems that combines increased biological nitrogen fixation, utilizes agromineral resources such as phosphate rock, better uses organic resources, and more efficiently applies mineral fertilizers. The new approach to managing soil nutrients, recognized as integrated soil fertility management, aims to increase food production through strategic combination of traditional and new technologies and is being stimulated through increased availability and more profitable use of mineral fertilizers by Africa's poorer farmers. This is building on already existing sparks of hope for restoring soil fertility in sub-Saharan Africa derived from such examples as the increasing adoption of the zai-type of pitting system originated in drier parts of West Africa which exemplifies the beneficial effects of integrating harvesting of water and applying nutrient sources at each planting station so as to increase yield in a region where both necessities are key limiting factors. Nitrogen fixation by indigenous and introduced legumes combined with improved agronomic practices has shown potential for kick-starting self-multiplying improvements in soil productivity. Such successes will be accelerated by broader initiatives which improve rural infrastructure, increase accessibility of inputs, improve marketing facilities, and make reinvestment into farming more productive and sustainable. Indeed, experience indicates that investments in farming and, by inference, soil fertility conservation are made when economic returns from smallholder production are sufficient to do so. So, while technical advances leading to improvements in farming practice must continue, policymakers must also recognize that agriculture ultimately forms the basis for economic recovery and act upon past promises to invest in agriculture, including the restoration of nutrient-depleted soils. Investments must address factors that have impacts both on the broad reforms for provision of services such as marketing and trade, as well as those directly constraining the poor farmers such as capacity to access and efficiently apply fertilizers.

en
Year
2010
en
Country
  • KE
Organization
    Data keywords
    • knowledge
    en
    Agriculture keywords
    • agriculture
    • farming
    en
    Data topic
    • information systems
    • sensors
    en
    SO
    ADVANCES IN AGRONOMY, VOL 108
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/RMRL5NVF
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.