e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Chemical indices and methods of multivariate statistics as a tool for odor classification

en
Abstract

Industrial and agricultural off-gas streams are comprised of numerous volatile compounds, many of which have substantially different odorous properties. State-of-the-art waste-gas treatment includes the characterization of these molecules and is directed at, if possible, either the avoidance of such odorants during processing or the use of existing standardized air purification techniques like bioscrubbing or afterburning, which however, often show low efficiency under ecological and economical regards. Selective odor separation from the off-gas streams could ease many of these disadvantages but is not yet widely applicable. Thus, the aim of this paper is to identify possible model substances in selective odor separation research from 155 volatile molecules mainly originating from livestock facilities, fat refineries, and cocoa and coffee production by knowledge-based methods. All compounds are examined with regard to their structure and information-content using topological and information-theoretical indices. Resulting data are fitted in an observation matrix, and similarities between the substances are computed. Principal component analysis and k-means cluster analysis are conducted showing that clustering of indices data can depict odor information correlating well to molecular composition and molecular shape. Quantitative molecule describtion along with the application of such statistical means therefore provide a good classification tool of malodorant structure properties with no thermodynamic data needed. The approximate look-alike shape of odorous compounds within the clusters suggests a fair choice of possible model molecules.

en
Year
2007
en
Country
  • DE
Organization
  • Helmholtz_Assoc (DE)
Data keywords
  • knowledge
  • knowledge based
en
Agriculture keywords
  • agriculture
  • livestock
en
Data topic
  • modeling
en
SO
ENVIRONMENTAL SCIENCE & TECHNOLOGY
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Helmholtz_Assoc (DE)
uid:/1083S62R
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.