The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.
This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.
You can access and play with the graphs:
- Evolution of the number of publications between 2005 and 2015
- Map of most publishing countries between 2005 and 2015
- Network of country collaborations
- Network of institutional collaborations (+10 publications)
- Network of keywords relating to data - Link
Energy potential through agricultural biomass using geographical information system - A case study of Punjab
Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year(-1). The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t(-1). (c) 2007 Elsevier Ltd. All rights reserved.
Inappropriate format for Document type, expected simple value but got array, please use list format