e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Scenario grouping in a progressive hedging-based meta-heuristic for stochastic network design

en
Abstract

We propose a methodological approach to build strategies for grouping scenarios as defined by the type of scenario decomposition, type of grouping, and the measures specifying scenario similarity. We evaluate these strategies in the context of stochastic network design by analyzing the behavior and performance of a new progressive hedging-based meta-heuristic for stochastic network design that solves subproblems comprising multiple scenarios. We compare the proposed strategies not only among themselves, but also against the strategy of grouping scenarios randomly and the lower bound provided by a state-of-the-art MIP solver. The results show that, by solving multi-scenario subproblems generated by the strategies we propose, the meta-heuristic produces better results in terms of solution quality and computing efficiency than when either single-scenario subproblems or multiple-scenario subproblems that are generated by picking scenarios at random are solved. The results also show that, considering all the strategies tested, the covering strategy with respect to commodity demands leads to the highest quality solutions and the quickest convergence. (C) 2013 Elsevier Ltd. All rights reserved.

en
Year
2014
en
Country
  • US
Organization
  • Loyola_Univ_Chicago (US)
Data keywords
  • machine learning
en
Agriculture keywords
    en
    Data topic
    • big data
    • modeling
    en
    SO
    COMPUTERS & OPERATIONS RESEARCH
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/2GVXQG46
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.