e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Characterization of microRNAs from sheep (Ovis aries) using computational and experimental analyses


Ovis aries is one of the most important agricultural livestock for meat production, and also is an ideal model organism for biological and comparative genomics studies. Many miRNAs have been reported for their important roles in developmental processes in various animals, but there is limited information about O. aries miRNAs. In this study, combining a computational method based on expressed sequence tag (EST) analysis with experimental identification based on small RNA cDNA library, we identified 31 miRNAs belong to 24 families in sheep, 2 of which were novel miRNAs which had never been previously identified in any species. Especially, we cloned 12 miRNAs from the sheep skeletal muscle, which were good candidate miRNAs to be studied about the miRNA-dependant regulated process of muscle development, and we identified four pairs of miRNA/miRNA and one pair of miRNA-3p/miRNA-5p from sheep EST sequences. Expression analysis indicated that some miRNAs were expressed in a specific tissue, and the pair of miRNA-3p/miRNA-5p and one pair of miRNA/miRNA had a similar relative expression pattern in some tissues, respectively. Further, we predicted 120 potential target genes of 31 oar-miRNAs on the 3'UTR of O. aries genes. Gene ontology analysis showed that most of these genes took part in the cellular process and metabolic process. Our results enriched the O. aries miRNA database and provided useful information for investigating biological functions of miRNAs and miRNA in sheep.

  • CN
  • US
  • KR
  • CAAS_China_Acad_Agr_Sci (CN)
  • Cornell_Univ (US)
  • Shanghai_Jiao_Tong_Univ_SJTU (CN)
  • CAS_Chinese_Acad_Sci (CN)
  • Gyeongsang_Natl_Univ (KR)
  • Shangdong_Univ_Tradit_Chinese_Med (CN)
Data keywords
  • ontology
Agriculture keywords
  • agriculture
  • livestock
Data topic
  • big data
  • information systems
  • modeling
  • semantics
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • CAAS_China_Acad_Agr_Sci (CN)
  • Cornell_Univ (US)
  • Shanghai_Jiao_Tong_Univ_SJTU (CN)
  • CAS_Chinese_Acad_Sci (CN)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.