e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Dynamic cattle behavioural classification using supervised ensemble classifiers

en
Abstract

In this paper various supervised machine learning techniques were applied to classify cattle behaviour patterns recorded using collar systems with 3-axis accelerometer and magnetometer, fitted to individual dairy cows to infer their physical behaviours. Cattle collar data was collected at the Tasmanian Institute of Agriculture (TIA) Dairy Research Facility in Tasmania. In the first stage of analysis a novel hybrid unsupervised clustering framework, comprised of probabilistic principal component analysis, Fuzzy C Means, and Self Organizing Map network algorithms was developed and used to study the natural structure of the sensor data. Findings from this unsupervised clustering were used to guide the next stage of supervised machine learning. Five major behaviour classes, namely, Grazing, Ruminating, Resting, Walking, and other behaviour were identified for the classification trials. An ensemble of classifiers approach was used to learn models of cow behaviour using sensor data and ground truth behaviour observations acquired from the field. Ensemble classification using bagging, Random Subspace and AdaBoost methods along with conventional supervised classification methods, namely, Binary Tree, Linear Discriminant Analysis classifier, Naive Bayes classifier, k-Nearest Neighbour classifier, and Adaptive Neuro Fuzzy Inference System classifier were compared. The highest average correct classification accuracy of 96% was achieved using the bagging ensemble classification with Tree learner, which had 97% sensitivity, 89% specificity, 89% F1 score and 9% false discovery rate. This study has shown that cattle behaviours can be classified with a high accuracy using supervised machine learning technique. As dairy and beef systems become more intensive, the ability to identify the changes in the behaviours of individual livestock becomes increasingly difficult. Accurate behavioural monitoring through sensors provides a significant potential in providing a mechanism for the early detection and quantitative assessment of animal health issues such a lameness, informing key management events such as the identification of oestrus, or informing changes in supplementary feeding requirements. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.

en
Year
2015
en
Country
  • AU
Organization
  • CSIRO (AU)
  • Univ_Tasmania (AU)
Data keywords
  • machine learning
en
Agriculture keywords
  • cattle
  • agriculture
  • livestock
en
Data topic
  • big data
  • information systems
  • modeling
  • sensors
en
SO
COMPUTERS AND ELECTRONICS IN AGRICULTURE
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • CSIRO (AU)
uid:/2ZSF03C9
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.