e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Designing Landscapes for Performance Based on Emerging Principles in Landscape Ecology

en
Abstract

We have proposed a framework for transforming landscapes to improve performance by integrating ecological principles into landscape design. This effort would focus on the development of multifunctional landscapes, guided by the rapidly growing knowledge base of ecosystem services provided by landscape features. Although the conventional approach to landscape ecology is based on a model that assumes poor ecological quality in the human-dominated matrix, a review of recent literature reveals important opportunities to improve the quality of the landscape matrix by increasing spatial heterogeneity through the addition of seminatural landscape elements designed to provide multiple ecosystem services. Taken alone, these individual elements might not appear to have a large impact on the environment, but when considered together within the entire landscape, the contribution could be significant, particularly when these elements are intentionally designed to improve landscape performance. Previous attention has focused on the value of large patches of native vegetation for conservation efforts. These efforts have included preserving those areas that still remain, restoring those that once existed, and providing connectivity between them. But great opportunities exist to improve the quality of the matrix by designing multifunctional elements throughout the landscape. Through a synthesis of knowledge in landscape architecture and landscape ecology, we have demonstrated some important applications of the landscape performance framework in urban and agricultural settings. Based on a review of the literature, we have suggested several methods of evaluating and monitoring landscape performance to determine the relative success of a designed landscape.

en
Year
2009
en
Country
  • US
Organization
  • Iowa_State_Univ (US)
  • Univ_Vermont (US)
Data keywords
  • knowledge
  • knowledge based
en
Agriculture keywords
  • agriculture
en
Data topic
  • information systems
  • modeling
  • sensors
en
SO
ECOLOGY AND SOCIETY
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Iowa_State_Univ (US)
uid:/3234MG7H
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.