The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.
This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.
You can access and play with the graphs:
- Evolution of the number of publications between 2005 and 2015
- Map of most publishing countries between 2005 and 2015
- Network of country collaborations
- Network of institutional collaborations (+10 publications)
- Network of keywords relating to data - Link
We have proposed a framework for transforming landscapes to improve performance by integrating ecological principles into landscape design. This effort would focus on the development of multifunctional landscapes, guided by the rapidly growing knowledge base of ecosystem services provided by landscape features. Although the conventional approach to landscape ecology is based on a model that assumes poor ecological quality in the human-dominated matrix, a review of recent literature reveals important opportunities to improve the quality of the landscape matrix by increasing spatial heterogeneity through the addition of seminatural landscape elements designed to provide multiple ecosystem services. Taken alone, these individual elements might not appear to have a large impact on the environment, but when considered together within the entire landscape, the contribution could be significant, particularly when these elements are intentionally designed to improve landscape performance. Previous attention has focused on the value of large patches of native vegetation for conservation efforts. These efforts have included preserving those areas that still remain, restoring those that once existed, and providing connectivity between them. But great opportunities exist to improve the quality of the matrix by designing multifunctional elements throughout the landscape. Through a synthesis of knowledge in landscape architecture and landscape ecology, we have demonstrated some important applications of the landscape performance framework in urban and agricultural settings. Based on a review of the literature, we have suggested several methods of evaluating and monitoring landscape performance to determine the relative success of a designed landscape.
Inappropriate format for Document type, expected simple value but got array, please use list format