The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.
This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.
You can access and play with the graphs:
- Evolution of the number of publications between 2005 and 2015
- Map of most publishing countries between 2005 and 2015
- Network of country collaborations
- Network of institutional collaborations (+10 publications)
- Network of keywords relating to data - Link
Background: Although RNA-seq greatly advances our understanding of complex transcriptome landscapes, such as those found in mammals, complete RNA-seq studies in livestock and in particular in the pig are still lacking. Here, we used high-throughput RNA sequencing to gain insight into the characterization of the poly-A RNA fraction expressed in pig male gonads. An expression analysis comparing different mapping approaches and detection of allele specific expression is also discussed in this study. Results: By sequencing testicle mRNA of two phenotypically extreme pigs, one Iberian and one Large White, we identified hundreds of unannotated protein-coding genes (PcGs) in intergenic regions, some of them presenting orthology with closely related species. Interestingly, we also detected 2047 putative long non-coding RNA (lncRNA), including 469 with human homologues. Two methods, DEGseq and Cufflinks, were used for analyzing expression. DEGseq identified 15% less expressed genes than Cufflinks, because DEGseq utilizes only unambiguously mapped reads. Moreover, a large fraction of the transcriptome is made up of transposable elements (14500 elements encountered), as has been reported in previous studies. Gene expression results between microarray and RNA-seq technologies were relatively well correlated (r = 0.71 across individuals). Differentially expressed genes between Large White and Iberian showed a significant overrepresentation of gamete production and lipid metabolism gene ontology categories. Finally, allelic imbalance was detected in similar to 4% of heterozygous sites. Conclusions: RNA-seq is a powerful tool to gain insight into complex transcriptomes. In addition to uncovering many unnanotated genes, our study allowed us to determine that a considerable fraction is made up of long non-coding transcripts and transposable elements. Their biological roles remain to be determined in future studies. In terms of differences in expression between Large White and Iberian pigs, these were largest for genes involved in spermatogenesis and lipid metabolism, which is consistent with phenotypic extreme differences in prolificacy and fat deposition between these two breeds.
- Univ_Autonoma_Barcelona_UAB (ES)
- CERCA_CRAG_Ctr_Res_Agric_Genom (ES)
- CERCA_CRG_Ctr_Genom_Regul (ES)
- ICREA_Catalan_Inst_Res_&_Adv_Studies (ES)
- Univ_Pompeu_Fabra_UPF (ES)
Inappropriate format for Document type, expected simple value but got array, please use list format