e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Spatial models of northern bobwhite populations for conservation planning

en
Abstract

Since 1980, northern bobwhite (Colinus virginianus) range-wide populations declined 3.9% annually. Within the West Gulf Coastal Plain Bird Conservation Region in the south-central United States, populations of this quail species have declined 6.8% annually. These declines sparked calls for land use change and prompted implementation of various conservation practices. However, to effectively reverse these declines and restore northern bobwhite to their former population levels, habitat conservation and management efforts must target establishment and maintenance of sustainable populations. To provide guidance for conservation and restoration of habitat capable of supporting sustainable northern bobwhite populations in the West Gulf Coastal Plain, we modeled their spatial distribution using landscape characteristics derived from 1992 National Land Cover Data and bird detections, from 1990 to 1994, along 10-stop Breeding Bird Survey route segments. Four landscape metrics influenced detections of northern bobwhite: detections were greater in areas with more grassland and increased aggregation of agricultural lands, but detections were reduced in areas with increased density of land cover edge and grassland edge. Using these landscape metrics, we projected the abundance and spatial distribution of northern bobwhite populations across the entire West Gulf Coastal Plain. Predicted populations closely approximated abundance estimates from a different cadre of concurrently collected data but model predictions did not accurately reflect bobwhite detections along species-specific call-count routes in Arkansas and Louisiana. Using similar methods, we also projected northern bobwhite population distribution circa 1980 based on Land Use Land Cover data and bird survey data from 1976 to 1984. We compared our 1980 spatial projections with our spatial estimate of 1992 populations to identify areas of population change. Additionally, we used our projection of the spatial distribution and abundance of bobwhite to predict areas of population sustainability. Our projections of population change and sustainability provide guidance for targeting habitat conservation and rehabilitation efforts for restoration of northern bobwhite populations in the West Gulf Coastal Plain.

en
Year
2007
en
Country
  • US
Organization
  • US_GS_US_Geol_Survey (US)
  • US_FWS_Fish_&_Wildlife_Serv (US)
Data keywords
    en
    Agriculture keywords
    • agriculture
    en
    Data topic
    • modeling
    • sensors
    en
    SO
    JOURNAL OF WILDLIFE MANAGEMENT
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/3CFWC0D5
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.