The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.
This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.
You can access and play with the graphs:
- Evolution of the number of publications between 2005 and 2015
- Map of most publishing countries between 2005 and 2015
- Network of country collaborations
- Network of institutional collaborations (+10 publications)
- Network of keywords relating to data - Link
Flood detection and mapping of the Thailand Central plain using RADARSAT and MODIS under a sensor web environment
Flooding in general is insignificant event worldwide and also in Thailand. The Central plain, the Northern plain and the northeast of Thailand are frequently flooded areas, caused by yearly monsoons. The Thai government has extra expenditure to provide disaster relief and for the restoration of flood affected structures, persons, livestock, etc. Current flood detection in real time or near real time has become a challenge in the flood emergency response. In this paper, an automatic instant time flood detection approach consisting of a data retrieval service, flood sensor observation service (SOS), flood detection web processing service (WPS) under a sensor web environment, is presented to generate dynamically real-time flood maps. A scenario of a RADARSAT and MODIS sensor web data service for flood detection cover of the Thailand Central plain is used to test the feasibility of the proposed framework. MODIS data are used to overview the wide area, while RADARSAT data are used to classify the flood area. The proposed framework using the transactional web coverage service (WCS-T) for instant flood detection processes dynamic real-time remote sensing observations and generates instant flood maps. The results show that the proposed approach is feasible for automatic instant flood detection. (C) 2011 Elsevier B.V. All rights reserved.
Inappropriate format for Document type, expected simple value but got array, please use list format