e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Predicting gully initiation: comparing data mining techniques, analytical hierarchy processes and the topographic threshold

en
Abstract

Predicting gully initiation at catchment scale was done previously by integrating a geographical information system (GIS) with physically based models, statistical procedures or with knowledge-based expert systems. However, the reliability and validity of applying these procedures are still questionable. In this work, a data mining (DM) procedure based on decision trees was applied to identify areas of gully initiation risk. Performance was compared with the analytic hierarchy process (AHP) expert system and with the commonly used topographic threshold (TT) technique. A spatial database was used to test the models, composed of a target variable (presence or absence of initial points) and ten independent environmental, climatic and human-induced variables. The following findings emerged: using the same input layers, DM provided better predictive ability of gully initiation points than the application of both AHP and TT. The main difference between DM and TT was the very high overestimation inherent in TT. In addition, the minimum slope observed for soil detachment was 2 degrees, whereas in other studies it is 3 degrees. This could be explained by soil resistance, which is substantially lower in agricultural fields, while most studies test unploughed soil. Finally, rainfall intensity events >62.2?mm?h-1 (for a period of 30?min) were found to have a significant effect on gully initiation. Copyright (C) 2012 John Wiley & Sons, Ltd.

en
Year
2012
en
Country
  • IL
Organization
    Data keywords
    • knowledge
    • information system
    • knowledge based
    en
    Agriculture keywords
    • agriculture
    en
    Data topic
    • big data
    • information systems
    • sensors
    en
    SO
    EARTH SURFACE PROCESSES AND LANDFORMS
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/3KTWHN3N
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.