e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

ESTIMATION OF OPTIMAL BIOMASS REMOVAL RATE BASED ON TOLERABLE SOIL EROSION FOR SINGLE-PASS CROP GRAIN AND BIOMASS HARVESTING SYSTEM

en
Abstract

As the demand for biomass feedstocks grows, it is likely that agricultural residue will be removed in a way that compromises soil sustainability due to increased soil erosion, depletion of organic matter, and deterioration of soil physical characteristics. Since soil erosion from agricultural fields depends on several factors including soil type, field terrain, and cropping practices, the amount of biomass that can be removed while maintaining soil tilth varies substantially over space and time. The RUSLE2 soil erosion model, which takes into account these spatio-temporal variations, was used to estimate tolerable agricultural biomass removal rates at field scales for a single-pass crop grain and biomass harvesting system. Soil type, field topography, climate data, management practices, and conservation practices were stored in individual databases on a state or county basis. Geographic position of the field was used as a spatial key to access the databases to select site-specific information such as soil, topography, and management related parameters. These parameters along with actual grain yield were provided as inputs to the RUSLE2 model to calculate yearly soil loss per unit area of the field. An iterative technique was then used to determine site-specific tolerable biomass removal rates that keep the soil loss below the soil loss thresholds (T) of the field. The tolerable removal rates varied substantially with field terrain, crop management practices, and soil type. At a location in a field in Winnebago county, Iowa, with similar to 1% slope and conventional tillage practices, up to 98% of the 11 Mg ha(-1) total above-ground biomass was available for collection with negligible soil loss. There was no biomass available to remove with conventional tillage practices on steep slopes, as in a field in Crawford county, Iowa, with a 12.6% slope. If no-till crop practices were adopted, up to 70% of the total above-ground biomass could be collected at the same location with 12.6% slope. In the case of a soybean-corn rotation with no-till practices, about 98% of total biomass was available for removal at the locations in the Winnebago field with low slopes, whereas 77% of total biomass was available at a location in the Crawford field with a 7.5% slope. Tolerable removal rates varied substantially over an agricultural field, which showed the importance of site-specific removal rate estimation. These removal rates can be useful in developing recommended rates for producers to use during a single-pass crop grain and biomass harvesting operation. However, this study only considered the soil erosion tolerance level in estimating biomass removal rates. Before providing the final recommendation to end users, further investigations will be necessary to study the potential effects of continuous biomass removal on organic matter content and other biophysical properties of the soil.

en
Year
2012
en
Country
  • US
Organization
  • Washington_State_Univ (US)
  • Iowa_State_Univ (US)
Data keywords
    en
    Agriculture keywords
    • agriculture
    en
    Data topic
    • information systems
    • modeling
    en
    SO
    TRANSACTIONS OF THE ASABE
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
    • Washington_State_Univ (US)
    • Iowa_State_Univ (US)
    uid:/404X42D5
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.