The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.
This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.
You can access and play with the graphs:
- Evolution of the number of publications between 2005 and 2015
- Map of most publishing countries between 2005 and 2015
- Network of country collaborations
- Network of institutional collaborations (+10 publications)
- Network of keywords relating to data - Link
The ever increasing energy requirements of supercomputers and server farms is driving the scientific and industrial communities to take in deeper consideration the energy efficiency of computing equipments. This contribution addresses the issue proposing a cluster of ARM processors for high-performance computing. The cluster is composed of five BeagleBoard-xM, with one board managing the cluster, and the other boards executing the actual processing. The software platform is based on the Angstrom GNU/Linux distribution and is equipped with a distributed file system to ease sharing data and code among the nodes of the cluster, and with tools for managing tasks and monitoring the status of each node. The computational capabilities of the cluster have been assessed through High-Performance Linpack and a cluster-wide speaker diarization algorithm, while power consumption has been measured using a clamp meter. Experimental results obtained in the speaker diarization task showed that the energy efficiency of the BeagleBoard-xM cluster is comparable to the one of a laptop computer equipped with a Intel Core2 Duo T8300 running at 2.4 GHz. Furthermore, removing the bottleneck due to the Ethernet interface, the BeagleBoard-xM cluster is able to achieve a superior energy efficiency.
Inappropriate format for Document type, expected simple value but got array, please use list format