e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Comparative Transcriptional Analysis of Asexual and Sexual Morphs Reveals Possible Mechanisms in Reproductive Polyphenism of the Cotton Aphid


Aphids, the destructive insect pests in the agriculture, horticulture and forestry, are capable of reproducing asexually and sexually upon environmental change. However, the molecular basis of aphid reproductive mode switch remains an enigma. Here we report a comparative analysis of differential gene expression profiling among parthenogenetic females, gynoparae and sexual females of the cotton aphid Aphis gossypii, using the RNA-seq approach with next-generation sequencing platforms, followed by RT-qPCR. At the cutoff criteria of fold change >= 2 and P<0.01, we identified 741 up- and 879 down-regulated genes in gynoparae versus parthenogenetic females, 2,101 up- and 2,210 down-regulated genes in sexual females compared to gynoparae, and 1,614 up- and 2,238 down-regulated genes in sexual females relative to parthenogenetic females. Gene ontology category and KEGG pathway analysis suggest the involvement of differentially expressed genes in multiple cellular signaling pathways into the reproductive mode transition, including phototransduction, cuticle composition, progesterone-mediated oocyte maturation and endocrine regulation. This study forms a basis for deciphering the molecular mechanisms underlying the shift from asexual to sexual reproduction in the cotton aphid. It also provides valuable resources for future studies on this host-alternating aphid species, and the insight into the understanding of reproductive mode plasticity in different aphid species.

  • CN
  • CAS_Chinese_Acad_Sci (CN)
Data keywords
  • ontology
Agriculture keywords
  • agriculture
Data topic
  • information systems
  • semantics
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • CAS_Chinese_Acad_Sci (CN)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.