e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Evidence of Activation and Suppression during the Early Immune Response to Foot-and-Mouth Disease Virus


Foot-and-mouth disease virus causes a serious disease of livestock species, threatening free global trade and food security. The disease spreads rapidly between animals, and to ensure a window of opportunity for such spread, the virus has evolved multiple mechanisms to subvert the early immune response. The cycle of infection in the individual animal is very short, infection is initiated, disseminated throughout the body and infectious virus produced in <7 days. Foot-and-mouth disease virus has been shown to disrupt the innate response in vitro and also interacts directly with antigen-presenting cells and their precursors. This interaction results in suboptimal immune function, favouring viral replication and the delayed onset of specific adaptive T-cell responses. Detailed understanding of this cycle is crucial to effectively control disease in livestock populations. Knowledge-based vaccine design would specifically target and induce the immunological mechanisms of early protection and of robust memory induction. Specifically, information on the contribution of cytokines and interferon, innate immune cells as well as humoral and cellular immunity can be employed to design vaccines promoting such responses. Furthermore, understanding of viral escape mechanisms of immunity can be used to create attenuated viruses that could be used to develop novel vaccines and to study viral pathogenesis.

  • GB
  • US
  • ES
  • CH
  • BBSRC_Biotech_&_Biol_Sci_Res_Council (UK)
  • USDA_ARS_Agr_Res_Serv (US)
  • INIA_Natl_Inst_Agr_&_Food_Res_&_Technol (ES)
  • FVO_Fed_Veterinary_Off (CH)
Data keywords
  • knowledge
  • knowledge based
Agriculture keywords
  • livestock
Data topic
  • information systems
  • semantics
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • BBSRC_Biotech_&_Biol_Sci_Res_Council (UK)
  • USDA_ARS_Agr_Res_Serv (US)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.