e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


A review of corn masa processing residues: Generation, properties, and potential utilization


The production of corn masa-based products in the US has been increasing over the last several years, and as a result, so has the quantity of waste materials being generated from this industry. Although currently landfilled, these byproduct streams may have potential for value-added processing and utilization, which are options that simultaneously hold the promise of increased economic benefit for masa processors as well as decreased potential pollution for the environment. Fundamental to any byproduct development effort is knowledge of the characteristics of the residue stream, because physical and chemical properties are vital for the proper design of subsequent processing operations and applications. Data for masa byproduct materials are currently not readily available, however. Thus, the objective of this study was to fully investigate, review, and summarize the existing literature in order to develop a comprehensive knowledge base for these residue streams. The most substantial findings from this study were that masa residues currently are not being utilized as coproducts, but instead are being landfilled;,they have a high fiber content, and thus much untapped potential exists for its extraction and value-added utilization vis-h-vis human and industrial applications, including phytosterol and ethanol production. It was also determined that masa byproducts, due to the high fiber content, may also be suitable for use as livestock feed additives, especially for ruminant animals that can digest these materials. Furthermore, due to substantial calcium content, masa byproducts could also potentially be used as a calcium resource. Under current processing practices, though, these residues have very high moisture contents. Before they can be effectively and economically utilized, they must be dehydrated in order to reduce transportation costs, decrease microbial activity, and increase shelf life. (c) 2005 Elsevier Ltd. All rights reserved.

  • US
  • USDA_ARS_Agr_Res_Serv (US)
Data keywords
  • knowledge
  • knowledge based
Agriculture keywords
  • livestock
Data topic
  • information systems
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • USDA_ARS_Agr_Res_Serv (US)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.