e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Mapping potential foodsheds in New York State: A spatial model for evaluating the capacity to localize food production


Growing interest in local food has sparked debate about the merits of attempting to reduce the distance food travels. One point of contention is the capacity of local agriculture to meet the food needs of local people. In hopes of informing this debate, this research presents a method for mapping potential foodsheds, land areas that could theoretically feed urban centers. The model was applied to New York State (NYS). Geographic information systems were used to estimate the spatial distribution of food production capacity relative to the food needs of NYS population centers. Optimization tools were then applied to allocate production potential to meet food needs in the minimum distance possible. Overall, the model showed that NYS could provide 34% of its total food needs within an average distance of just 49 km. However, the model did not allocate production potential evenly. Most NYS population centers could have the majority of their food needs sourced in-state, except for the greater New York City (NYC) area. Thus, the study presents a mixed review of the potential for local food systems to reduce the distance food travels. While small- to medium-sized cities of NYS could theoretically meet their food needs within distances two orders of magnitude smaller than the current American food system, NYC must draw on more distant food-producing resources. Nonetheless, the foodshed model provides a successful template for considering the geography of food production and food consumption simultaneously. Such a tool could be valuable for examining how cities might change their food procurement to curb greenhouse gas emissions and adapt to depletion of petroleum and other energy resources necessary for long-distance transport of food.

  • US
  • Cornell_Univ (US)
  • Salisbury_Univ (US)
Data keywords
  • information system
Agriculture keywords
  • agriculture
Data topic
  • information systems
  • modeling
  • sensors
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Cornell_Univ (US)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.