e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Effect of Wood-Gas Composition on Performance and Exhaust Emission Characteristics of a Large Spark-Ignition Engine

en
Abstract

The gasification of wood allows the production of wood gas, which can be used as an energy source in large spark-ignition (SI) piston engines located in agricultural areas for generating electric power. The composition of wood gas depends on the fuel source and the processing technique. The primary objective of this paper is to investigate the main performance and emission characteristics of a multi-cylinder, four-stroke, turbocharged, spark-ignited engine fueled with three different types of wood gas at various air to fuel excess ratios. This engine is used for electricity production especially in small generator sets. In order to examine the effect of wood-gas composition on performance and exhaust emissions, a theoretical investigation is conducted by using a comprehensive two-zone phenomenological model. The results concern some of the main engine performance characteristics, i.e., brake specific fuel consumption and maximum cylinder pressure, and specific NO and CO emissions. The predictive ability of the model has been tested against experimental measurements. The results of simulation are found to be in good agreement with the variation trends of the experimental data with engine load. The conclusions from this investigation are valuable for the use of wood gas as a full supplement energy source in a heavy-duty, spark-ignited engine used for electric power generation in agriculture areas, where the composition of the produced wood gas is not fixed but depends on the fuel feedstock source and the type of gasification. (C) 2013 American Society of Civil Engineers.

en
Year
2014
en
Country
  • GR
Organization
    Data keywords
    • SPARK
    en
    Agriculture keywords
    • agriculture
    en
    Data topic
    • information systems
    • modeling
    en
    SO
    JOURNAL OF ENERGY ENGINEERING
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/6CF6WBGX
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.