e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Soil macronutrient sensing for precision agriculture

en
Abstract

Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destructive quantification of soil properties, including nutrient levels, has been possible with optical diffuse reflectance sensing. Another approach, electrochemical sensing based on ion-selective electrodes or ion-selective field effect transistors, has been recognized as useful in real-time analysis because of its simplicity, portability, rapid response, and ability to directly measure the analyte with a wide range of sensitivity. Current sensor developments and related technologies that are applicable to the measurement of soil macronutrients for SSCM are comprehensively reviewed. Examples of optical and electrochemical sensors applied in soil analyses are given, while advantages and obstacles to their adoption are discussed. It is proposed that on-the-go vehicle-based sensing systems have potential for efficiently and rapidly characterizing variability of soil macronutrients within a field.

en
Year
2009
en
Country
  • KR
  • US
Organization
  • USDA_ARS_Agr_Res_Serv (US)
  • Pusan_Natl_Univ (KR)
Data keywords
  • real time analysis
en
Agriculture keywords
  • agriculture
en
Data topic
  • sensors
en
SO
JOURNAL OF ENVIRONMENTAL MONITORING
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • USDA_ARS_Agr_Res_Serv (US)
uid:/6NVD0NM7
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.