e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Machine learning and data mining: strategies for hypothesis generation


Strategies for generating knowledge in medicine have included observation of associations in clinical or research settings and more recently, development of pathophysiological models based on molecular biology. Although critically important, they limit hypothesis generation to an incremental pace. Machine learning and data mining are alternative approaches to identifying new vistas to pursue, as is already evident in the literature. In concert with these analytic strategies, novel approaches to data collection can enhance the hypothesis pipeline as well. In data farming, data are obtained in an 'organic' way, in the sense that it is entered by patients themselves and available for harvesting. In contrast, in evidence farming (EF), it is the provider who enters medical data about individual patients. EF differs from regular electronic medical record systems because frontline providers can use it to learn fromtheir own past experience. In addition to the possibility of generating large databases with farming approaches, it is likely that we can further harness the power of large data sets collected using either farming or more standard techniques through implementation of data-mining and machine-learning strategies. Exploiting large databases to develop new hypotheses regarding neurobiological and genetic underpinnings of psychiatric illness is useful in itself, but also affords the opportunity to identify novel mechanisms to be targeted in drug discovery and development. Molecular Psychiatry (2012) 17, 956-959; doi:10.1038/mp.2011.173; published online 10 January 2012

  • US
  • ES
  • Columbia_Univ (US)
  • Princeton_Univ (US)
  • Univ_Autonoma_Madrid_UAM (ES)
  • Univ_Carlos_III_Madrid_UC3M (ES)
  • New_York_State_Psychiat_Inst_NYSPI (US)
Data keywords
  • machine learning
  • reasoning
  • knowledge
Agriculture keywords
  • farming
Data topic
  • big data
  • modeling
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.