e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


How to implement biodiversity-based agriculture to enhance ecosystem services: a review


Intensive agriculture has led to several drawbacks such as biodiversity loss, climate change, erosion, and pollution of air and water. A potential solution is to implement management practices that increase the level of provision of ecosystem services such as soil fertility and biological regulation. There is a lot of literature on the principles of agroecology. However, there is a gap of knowledge between agroecological principles and practical applications. Therefore, we review here agroecological and management sciences to identify two facts that explain the lack of practical applications: (1) the occurrence of high uncertainties about relations between agricultural practices, ecological processes, and ecosystem services, and (2) the site-specific character of agroecological practices required to deliver expected ecosystem services. We also show that an adaptive-management approach, focusing on planning and monitoring, can serve as a framework for developing and implementing learning tools tailored for biodiversity-based agriculture. Among the current learning tools developed by researchers, we identify two main types of emergent support tools likely to help design diversified farming systems and landscapes: (1) knowledge bases containing scientific supports and experiential knowledge and (2) model-based games. These tools have to be coupled with well-tailored field or management indicators that allow monitoring effects of practices on biodiversity and ecosystem services. Finally, we propose a research agenda that requires bringing together contributions from agricultural, ecological, management, and knowledge management sciences, and asserts that researchers have to take the position of "integration and implementation sciences.".

  • FR
  • Inra (FR)
  • CNRS (FR)
  • ENFA_Toulouse_Auzeville (FR)
  • INPT_Inst_Natl_Polytech_Toulouse (FR)
Data keywords
  • knowledge
Agriculture keywords
  • agriculture
  • farming
Data topic
  • modeling
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Inra (FR)
  • CNRS (FR)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.