e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Ensemble data mining approaches to forecast regional sugarcane crop production

en
Abstract

Accurate yield forecasts are pivotal for the success of any agricultural industry that plans or sells ahead of the annual harvest. Biophysical models that integrate information about crop growing conditions can give early insight about the likely size of a crop. At a point scale, where highly detailed knowledge about environmental and management conditions are known, the performance of reputable crop modelling approaches like APSIM have been well established. However, regional growing conditions tend not to be homogenous. Heterogeneity is common in many agricultural systems, and particularly in sugarcane systems. To overcome this obstacle, hundreds of model settings ('models' for convenience) that represent different environmental and management conditions were created for Ayr, a major sugarcane growing region in north eastern Australia. Statistical data mining methods that used ensembles were used to select and assign weights to the best models. One technique, called a lasso approximation produced the best results. This procedure, produced a predictive correlation (gamma(cv) of 0.71 when predicting end of season sugarcane yields some 4 months prior to the start of the harvest season, and 10 months prior to harvest completion. This continuous forecasting methodology based on statistical ensembles represents a considerable improvement upon previous research where only categorical forecast predictions had been employed. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

en
Year
2009
en
Country
  • AU
  • JP
Organization
  • James_Cook_Univ_JCU (AU)
  • CSIRO (AU)
Data keywords
  • machine learning
  • knowledge
en
Agriculture keywords
  • agriculture
en
Data topic
  • big data
  • modeling
en
SO
AGRICULTURAL AND FOREST METEOROLOGY
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • CSIRO (AU)
uid:/8K69S20K
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.