The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.
This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.
You can access and play with the graphs:
- Evolution of the number of publications between 2005 and 2015
- Map of most publishing countries between 2005 and 2015
- Network of country collaborations
- Network of institutional collaborations (+10 publications)
- Network of keywords relating to data - Link
Salinity is one of the most common abiotic stresses in agriculture production. Salt tolerance of rice (Oryza sativa) is an important trait controlled by various genes. The mechanism of rice salt tolerance, currently with limited understanding, is of great interest to molecular breeding in improving grain yield. In this study, a gene regulatory network of rice salt tolerance is constructed using a systems biology approach with a number of novel computational methods. We developed an improved volcano plot method in conjunction with a new machine-learning method for gene selection based on gene expression data and applied the method to choose genes related to salt tolerance in rice. The results were then assessed by quantitative trait loci (QTL), co-expression and regulatory binding motif analysis. The selected genes were constructed into a number of network modules based on predicted protein interactions including modules of phosphorylation activity, ubiquity activity, and several proteinase activities such as peroxidase, aspartic proteinase, glucosyltransferase, and flavonol synthase. All of these discovered modules are related to the salt tolerance mechanism of signal transduction, ion pump, abscisic acid mediation, reactive oxygen species scavenging and ion sequestration. We also predicted the three-dimensional structures of some crucial proteins related to the salt tolerance QTL for understanding the roles of these proteins in the network. Our computational study sheds some new light on the mechanism of salt tolerance and provides a systems biology pipeline for studying plant traits in general.
Inappropriate format for Document type, expected simple value but got array, please use list format