e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece

en
Abstract

Excessive application of chemical products for promoting crop growth is a significant contributor for elevated concentrations of heavy metals in agricultural soils potentially threatening human health through the food chain. In this study, a series of heavy metals were quantified in 132 agricultural soils of Argolida basin, Peloponnese, Greece, with the aim to characterize their accumulation patterns. Median concentrations of Cu, Pb, Zn, Ni, Co, Mn, As, Cd, Cr and Fe were 65.23, 20.1, 72.75, 1203, 20.6, 956.5, 7.1, 0.45, 723 and 27,100 mg/kg respectively. Statistically significant differences for Cu, Zn, Pb and Cd content were found between agricultural and background soils in the same region. Implementation of principal component analysis and cluster analysis successfully grouped the investigated chemical elements according to their anthropogenic or natural origin. The prolonged application of large amounts of fertilizers and pesticides-fungicides has resulted to Cu, Zn, Cd, Pb and As accumulation in the agricultural fields whereas Ni, Cr, Co and Fe amounts are controlled by parent material influences. Contrary to results commonly reported in the literature that characterize Mn as a geogenic element, this metal was found to exhibit a mixed source in the study agricultural system. Geographical information system techniques were used to illustrate the spatial distribution trends of the investigated elements confirming the clear contribution of agrochemicals to soil chemistry and highlighting the citrus soils around Argos town to have received large anthropogenic inputs. The agricultural area represented by olive groves does not demonstrate significant anthropogenic soil metal enrichment indicating that accumulation phenomena are restricted to the soils cultivated for oranges and mandarins. This study is the first detailed report on metal accumulation in citrus soils from Argolida basin, and results promote the care for the environment by reducing application rates of fertilizers and pesticides-fungicides and monitoring heavy metals levels in receiving soils. Future studies should pay attention to characterize the fractionation and reactivity of metals in citrus soils by utilizing selective chemical extractions with the aim to assess the actual risks for the environment. (C) 2014 Elsevier B.V. All rights reserved.

en
Year
2014
en
Country
  • GR
Organization
  • Univ_Athens (GR)
Data keywords
  • information system
en
Agriculture keywords
  • agriculture
en
Data topic
  • information systems
  • modeling
  • sensors
en
SO
GEODERMA
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/B1P3T306
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.