e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Characterization of Natural Antisense Transcript, Sclerotia Development and Secondary Metabolism by Strand-Specific RNA Sequencing of Aspergillus flavus

en
Abstract

Aspergillus flavus has received much attention owing to its severe impact on agriculture and fermented products induced by aflatoxin. Sclerotia morphogenesis is an important process related to A. flavus reproduction and aflatoxin biosynthesis. In order to obtain an extensive transcriptome profile of A. flavus and provide a comprehensive understanding of these physiological processes, the isolated mRNA of A. flavus CA43 cultures was subjected to high-throughput strand-specific RNA sequencing (ssRNA-seq). Our ssRNA-seq data profiled widespread transcription across the A. flavus genome, quantified vast transcripts (73% of total genes) and annotated precise transcript structures, including untranslated regions, upstream open reading frames (ORFs), alternative splicing variants and novel transcripts. We propose natural antisense transcripts in A. flavus might regulate gene expression mainly on the post-transcriptional level. This regulation might be relevant to tune biological processes such as aflatoxin biosynthesis and sclerotia development. Gene Ontology annotation of differentially expressed genes between the mycelia and sclerotia cultures indicated sclerotia development was related closely to A. flavus reproduction. Additionally, we have established the transcriptional profile of aflatoxin biosynthesis and its regulation model. We identified potential genes linking sclerotia development and aflatoxin biosynthesis. These genes could be used as targets for controlled regulation of aflatoxigenic strains of A. flavus.

en
Year
2014
en
Country
  • CN
Organization
  • S_China_Univ_Technol (CN)
Data keywords
  • ontology
en
Agriculture keywords
  • agriculture
en
Data topic
  • big data
en
SO
PLOS ONE
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/C8Q051LB
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.