e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Assessment of a Markov logic model of crop rotations for early crop mapping


Detailed and timely information on crop area, production and yield is important for the assessment of environmental impacts of agriculture, for the monitoring of the land use and management practices, and for food security early warning systems. A machine learning approach is proposed to model crop rotations which can predict with good accuracy, at the beginning of the agricultural season, the crops most likely to be present in a given field using the crop sequence of the previous 3-5 years. The approach is able to learn from data and to integrate expert knowledge represented as first-order logic rules. Its accuracy is assessed using the French Land Parcel Information System implemented in the frame of the EU's Common Agricultural Policy. This assessment is done using different settings in terms of temporal depth and spatial generalization coverage. The obtained results show that the proposed approach is able to predict the crop type of each field, before the beginning of the crop season, with an accuracy as high as 60%, which is better than the results obtained with current approaches based on remote sensing imagery. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

  • FR
    Data keywords
    • knowledge
    • information system
    • machine learning
    Agriculture keywords
    • agriculture
    Data topic
    • modeling
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.