e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Effects of meteorological forcing on coastal eutrophication: Modeling with model trees

en
Abstract

The exploration of processes leading to coastal eutrophication is a major challenge in ecological research, particularly in light of important new policies such as the European Water Framework Directive. In the present study primary production (in terms of chlorophyll alpha - chl alpha) is modeled based on a number of abiotic parameters using model trees (MTs), a machine learning (ML) approach whereby linear regressions are induced within homogeneous subsets of samples (tree leaves). Standardized regression was applied to determine the relative weight of abiotic parameters in the MT tree leaves whereas the efficiency of the MT method in chl alpha prediction was tested against neural networks (NNs) which is the most frequently used ML approach, and the classical multiple linear regression (MLR). To assess the efficiency of models to describe eutrophication-related responses under different environmental conditions, the methods were applied on a coastal ecosystem affected by terrestrial runoff for two meteorologically contrasting annual cycles: a typical dry ('04-'05) and a typical wet ('09-'10). MTs showed increased predictive power in chl alpha prediction attributed to the discrimination of input data space into tree leaves, instead of using a uniform space as in NNs and MLR. By grouping samples of each tested annual cycle (wet and dry) on a seasonal basis into discrete groups/leaves, MTs offer a much more explanatory description of ecosystem status than NNs and MLR. The discriminating variables forming tree leaves and the weighing coefficients of Linear Models (LMs) in each leaf provided a useful scaling of abiotic parameters driving chl alpha dynamics. The MT method is thus proposed as an efficient tool for obtaining insights into ecosystem processes leading to eutrophication events in coastal ecosystems and a useful component in integrated coastal zone management. (C) 2012 Elsevier Ltd. All rights reserved.

en
Year
2012
en
Country
  • GR
Organization
  • Univ_Aegean (GR)
Data keywords
  • machine learning
en
Agriculture keywords
    en
    Data topic
    • big data
    • modeling
    en
    SO
    ESTUARINE COASTAL AND SHELF SCIENCE
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      uid:/D6SVH5RJ
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.