e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Terrain traversability analysis methods for unmanned ground vehicles: A survey


Motion planning for unmanned ground vehicles (UGV) constitutes a domain of research where several disciplines meet, ranging from artificial intelligence and machine learning to robot perception and computer vision. In view of the plurality of related applications such as planetary exploration, search and rescue, agriculture, mining and off-road exploration, the aim of the present survey is to review the field of 3D terrain traversability analysis that is employed at a preceding stage as a means to effectively and efficiently guide the task of motion planning. We identify that in the epicenter of all related methodologies, 3D terrain information is used which is acquired from LIDAR, stereo range data, color or other sensory data and occasionally combined with static or dynamic vehicle models expressing the interaction of the vehicle with the terrain. By taxonomizing the various directions that have been explored in terrain perception and analysis, this review takes a step toward agglomerating the dispersed contributions from individual domains by elaborating on a number of key similarities as well as differences, in order to stimulate research in addressing the open challenges and inspire future developments. (C) 2013 Elsevier Ltd. All rights reserved.

  • IT
  • Univ_Roma_La_Sapienza (IT)
Data keywords
  • machine learning
Agriculture keywords
  • agriculture
Data topic
  • big data
  • information systems
  • modeling
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.