e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


A feature extraction software tool for agricultural object-based image analysis


A software application for automatic descriptive feature extraction from image-objects, FETEX 2.0, is presented and described in this paper. The input data include a multispectral high resolution digital image and a vector file in shapefile format containing the polygons or objects, usually extracted from a geospatial database. The design of the available descriptive features or attributes has been mainly focused on the description of agricultural parcels, providing a variety of information: spectral information from the different image bands; textural descriptors of the distribution of the intensity values based on the grey level co-occurrence matrix, the wavelet transform and a factor of edgeness; structural features describing the spatial arrangement of the elements inside the objects, based on the semivariogram curve and the Hough transform; and several descriptors of the object shape. The output file is a table that can be produced in four alternative formats, containing a vector of features for every object processed. This table of numeric values describing the objects from different points of view can be externally used as input data for any classification software. Additionally, several types of graphs and images describing the feature extraction procedure are produced, useful for interpretation and understanding the process. A test of the processing times is included, as well as an application of the program in a real parcel-based classification problem, providing some results and analyzing the applicability, the future improvement of the methodologies, and the use of additional types of data sets. This software is intended to be a dynamic tool, integrating further data and feature extraction algorithms for the progressive improvement of land use/land cover database classification and agricultural database updating processes. (C) 2011 Elsevier B.V. All rights reserved.

  • ES
  • Univ_Politecn_Valencia_UPV (ES)
Data keywords
  • agricultural database
Agriculture keywords
  • agriculture
Data topic
  • information systems
  • sensors
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Univ_Politecn_Valencia_UPV (ES)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.