The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.
This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.
You can access and play with the graphs:
- Evolution of the number of publications between 2005 and 2015
- Map of most publishing countries between 2005 and 2015
- Network of country collaborations
- Network of institutional collaborations (+10 publications)
- Network of keywords relating to data - Link
Background: Most recently, with maturing of bovine genome sequencing and high throughput SNP genotyping technologies, a large number of significant SNPs associated with economic important traits can be identified by genome-wide association studies (GWAS). To further determine true association findings in GWAS, the common strategy is to sift out most promising SNPs for follow-up replication studies. Hence it is crucial to explore the functional significance of the candidate SNPs in order to screen and select the potential functional ones. To systematically prioritize these statistically significant SNPs and facilitate follow-up replication studies, we developed a bovine SNP annotation tool (Snat) based on a web interface. Results: With Snat, various sources of genomic information are integrated and retrieved from several leading online databases, including SNP information from dbSNP, gene information from Entrez Gene, protein features from UniProt, linkage information from AnimalQTLdb, conserved elements from UCSC Genome Browser Database and gene functions from Gene Ontology (GO), KEGG PATHWAY and Online Mendelian Inheritance in Animals (OMIA). Snat provides two different applications, including a CGI-based web utility and a command-line version, to access the integrated database, target any single nucleotide loci of interest and perform multi-level functional annotations. For further validation of the practical significance of our study, SNPs involved in two commercial bovine SNP chips, i.e., the Affymetrix Bovine 10K chip array and the Illumina 50K chip array, have been annotated by Snat, and the corresponding outputs can be directly downloaded from Snat website. Furthermore, a real dataset involving 20 identified SNPs associated with milk yield in our recent GWAS was employed to demonstrate the practical significance of Snat. Conclusions: To our best knowledge, Snat is one of first tools focusing on SNP annotation for livestock. Snat confers researchers with a convenient and powerful platform to aid functional analyses and accurate evaluation on genes/variants related to SNPs, and facilitates follow-up replication studies in the post-GWAS era.
Inappropriate format for Document type, expected simple value but got array, please use list format