e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Indicators of environmentally sound land use in the humid tropics: The potential roles of expert opinion, knowledge engineering and knowledge discovery


Despite abundant literature on indicators for sustainable resource management, practical tools to help local users to apply its general concepts at a local to regional level are scarce. This means that decisions over land evaluation and land use at a local level are often not based on the formal application of indicators or decision_support systems for environmentally sound management but instead on the opinion of local expertise, for instance forest managers. cattle breeders, farmers and/or academics. This is particularly seen to be the case in the tropics where access to modern communication and information technologies is restricted. As the opinions of experts are often based on and influenced by personal experience, intuition, heuristics and bias, their evaluations and decision are often unclear to the non-expert working at a local level. In order to make their reasoning more comprehensible to the non-expert, the ecological condition of 176 plots in the tropical Southeast of Mexico were evaluated by experts on soil fertility, forest management, cattle breeding and agriculture. With the assistance of a knowledge engineer (one who converts expert knowledge and reasoning into a model), these expert opinions and reasoning were then translated into a formal computer model. As an alternative approach we applied a knowledge discovery technique, namely the induction of regression trees and automatically developed models using the expert evaluations as training data. Where knowledge engineering was tedious and time consuming, regression models could be rapidly generated. Moreover, the correspondence between regression trees and expert opinions was considerably higher than the correspondence between expert opinion and their own models. The regression trees used less explicative variables than the models generated by the experts. The minimisation of sampling effort due to variable space reduction means that the application of regression tree induction has a high potential for a rapid development of indicators for narrowly defined ecological assessments, needed for decision making on a local or regional scale. (C) 2009 Elsevier Ltd. All rights reserved.

  • MX
    Data keywords
    • knowledge
    • machine learning
    • knowledge engineering
    • information technology
    • reasoning
    Agriculture keywords
    • agriculture
    • farming
    • cattle
    Data topic
    • big data
    • modeling
    • semantics
    Document type

    Inappropriate format for Document type, expected simple value but got array, please use list format

    Institutions 10 co-publis
      Powered by Lodex 8.20.3
      logo commission europeenne
      e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
      Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.