e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

IT field monitoring in a Japanese system of rice intensification (J-SRI)

en
Abstract

A demonstration study on Information Technology (IT) field monitoring was conducted in a rice field under the System of Rice Intensification (SRI) environment in Shinshiro City, Aichi Prefecture, Japan. The IT system used in this study consisted of an intelligent sensor node web-server that is equipped with in situ camera and sensor networks for agrometeorological, soil, and plant growth monitoring. Dynamic changes in soil moisture, water level, agrometeorological, and environmental conditions were measured and monitored. With this precision farming set-up, understanding and easy assessment of the salient field conditions and phenomena such as cyclic soil wetting and drying as well as critical crop growth stages were made possible. Based on the findings of the demonstration experiment, the system was effective, reliable, and efficient in monitoring soil moisture parameters and agrometeorological information in remote rice field environment. The actual field conditions were captured well by a combination of images, numerical, and graphical data sets. With this precise information, the frequency of irrigation was found to be every 7 days. The rice field was irrigated up to a moisture level of 0.592 m(3)/m(3) (similar to 600 mV) and allowed to be depleted to a moisture level of 0.417 m(3)/m(3) (similar to 400 mV). With this alternate drying and wetting method (AWD), a 25.71% of irrigation water was saved. In this study, rice production was made more scientific and more reliable. Hence, the use of IT field monitoring system represented a viable medium for the realization of better rice productivity which leads to the ethic of sustainable agriculture.

en
Year
2011
en
Country
  • PH
  • JP
Organization
  • Univ_Tokyo (JP)
Data keywords
  • information technology
en
Agriculture keywords
  • farming
  • agriculture
en
Data topic
  • information systems
  • sensors
en
SO
PADDY AND WATER ENVIRONMENT
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    uid:/FVM14HGJ
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.