e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


A Bioinformatics Framework for plant pathologists to deliver global food security outcomes Keynote address from the 18th Australasian Plant Pathology Society Conference 2011


Bioinformatics applies information technologies to the allied fields of agriculture, horticulture, forestry, biotechnology, microbiology, plant physiology and molecular biology. Bioinformatics devises strategies for data management, analysis and integration tools that enable rapid scientific discovery and informed decision making. In plant pathology, the 'contemporary' application stage of bioinformatics is typically after a pathogen has been identified as a causative agent for a given plant host and subjected to biotechnological studies. In contrast, this paper contends that a broader bioinformatics framework should also integrate data/reports and interpretations/treatments as soon as potential pathogen incursions are encountered on a farm or forestry plot: capturing in real-time, elements of the incursion, sampling/survey, diagnostics, remedial treatments and field/laboratory work leading to the development of new cultivars or multiple disease resistance. Data currently captured/generated are managed in disparate formats: field/laboratory books, spreadsheets maintained independently by growers, extension officers and scientists, located in geographically disperse locations (e.g. farms, offices, institutions, archival repositories). Bioinformatics solutions provide the opportunity for a more coordinated electronic basis to manage/integrate this information. In this paper, a Bioinformatics Framework is proposed that enables improved cross-border, trans-discipline collaborative efforts that will enable more informed decision making by relevant stakeholders. In this way a shared biosecurity infrastructure can be developed that caters for sustainable global food and fibre production in the context of global climatic changes and increased opportunities for accidental disease incursions through the global plant trade.

  • AU
  • NZ
  • Murdoch_Univ (AU)
  • Landcare_Res (NZ)
Data keywords
  • information technology
  • data management
Agriculture keywords
  • agriculture
  • farm
Data topic
  • big data
  • information systems
  • knowledge transfer
  • decision support
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.