e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


A knowledge model system for wheat production management


A knowledge model with temporal and spatial characteristics for the quantitative design of a cultural pattern in wheat production, using systems analysis and dynamic modeling techniques, was developed for wheat management, as a decision-making tool in digital farming. The fundamental relationships and algorithms of wheat growth indices and management criteria to cultivars, ecological environments, and production levels were derived from the existing literature and research data to establish a knowledge model system for quantitative wheat management using Visual C++. The system designed a cultural management plan for general management guidelines and crop regulation indices for time-course control criteria during the wheat-growing period. The cultural management plan module included submodels to determine target grain yield and quality, cultivar choice, sowing date, population density, sowing rate, fertilization strategy, and water management, whereas the crop regulation indices module included submodels for suitable development stages, dynamic growth indices, source-sink indices, and nutrient indices. Evaluation of the knowledge model by design studies on the basis of data sets of different eco-sites, cultivars, and soil types indicated a favorable performance of the model system in recommending growth indices and management criteria under diverse conditions. Practical application of the knowledge model system in comparative field experiments produced yield gains of 2.4% to 16.5%. Thus, the presented knowledge model system overcame some of the difficulties of the traditional wheat management patterns and expert systems, and laid a foundation for facilitating the digitization of wheat management.

  • CN
  • Nanjing_Agr_Univ (CN)
Data keywords
  • knowledge
  • research data
Agriculture keywords
  • farming
Data topic
  • modeling
  • decision support
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Nanjing_Agr_Univ (CN)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.