e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Irrigation Modelling Language for decision_support


Irrigation decision_support Systems (DSS) have seen poor uptake in Australia for a number of reasons, one of which is the lack of their flexibility in allowing users to choose data sources they perceive as most relevant to them to generate the decision_support they receive. The number of local and remote data sources available to DSS users for use in irrigation scheduling is increasing due to technological progress in both the agricultural engineering and information technology sectors. A standardisation of the outputs of data sources used by irrigation DSS and their internal processes would help to solve this. While there are already large international projects, such as Sensor Web Enablement (SWE) and WaterML, aimed at standardising sensor communication, internet data transfer and natural resource data sources, irrigation-specific standardisation work has not been undertaken. This paper makes a start on this by providing some background information on irrigation data sources and other standardisation approaches affecting the irrigation sector, defining requirements for irrigation standardisation and providing details of tests of standardised data source output. Surveys in the 2007/2008 and the 2008/2009 irrigation seasons listed data sources that irrigators currently use for their management decisions. A large range was found especially when non-biophysical factors, such as irrigators' personal calendars, were classified as data sources. Non-biophysical factors affecting irrigation management have long been known to cause a 'gap' between the support irrigation DSS can provide and industry practice, therefore this classification of non-biophysical factors as data sources is a first step towards codifying their effects so that future DSS may incorporate them and bridge this gap. Apart from the data source range, this survey work showed there is currently no consensus among irrigators as to the total set of useful data sources with irrigators changing data source use over time and accepting new data sources. This further highlights the need for data source flexibility if irrigation DSS are to remain relevant to irrigators. The many data sources used, or potentially used in irrigation decision making, are often heterogeneous in form (units, structure, range timestep etc) and therefore Informatics - the science of information use - needs to be considered when working to combine them. Sub disciplines of informatics include the study of data formats, standards and semantics as well as information fusion, comparison and presentation. Informatics work within these disciplines aims to allow heterogeneous data sources to be meaningfully accessed and used through systems such as DSS. Much standards work, such as SWE and WaterML, results from informatics. In order to allow irrigation DSS to offer users choice with respect to the data sources used through them and to allow that set of data sources to be expanded as technological progress generates new ones, not only must the technical standardisation of data source outputs occur but a conceptual informatics framework that describes the data required, and the techniques used, to generate irrigation decision_support advice is also required. One way in which DSS may be able to help bridge the 'gap' between science and industry is to offer truly effective flexibility that will allow both biophysical and non-biophysical data sources to be used. We present summarised results from our surveys that indicate the range and type of current data sources used for irrigation decision making and give examples that show where other standardisation projects have catered for them and where they have not. We determine the position and scope of an Irrigation Modelling Language (IML) that can be used to further add to the other projects' standardisation efforts and fill gaps between them. After detailing these general requirements of an IML, we present a start to the formalisation of the conceptual model that is needed to underpin an IML by defining decision_support processes and their requisite data sources. We show such formalisation with data mark-up allows DSS more data source choice and conclude that the wide adoption of such an IML framework would lead to more flexible irrigation DSS.

  • AU
  • Univ_Melbourne (AU)
Data keywords
  • semantic
  • information technology
Agriculture keywords
  • agriculture
Data topic
  • big data
  • information systems
  • modeling
  • decision support
  • semantics
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Univ_Melbourne (AU)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.