e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Goal-driven Context-aware Data Filtering in IoT-based Systems


One of the crucial research issues in an IoT-based system is how to manage the huge amount of data transmitted by the potentially large number of sensors that form the system. Prior research has focused on centralized cloud-based "Big Data" architectures for collecting, collating and analyzing the data. However, most of these scenarios accumulate thousands of petabytes in a short period of time, increasing the demand for more storage, and also slowing down speed of data analysis. Hence for real-time scenarios, e.g., agricultural crop tracking, traffic management, etc., such an approach would be impractical. Moreover, depending on the context in which the data is generated and is to be used, only a fraction of the data would be needed for analysis. Therefore, the challenges are to determine which data to keep and which to discard for both short term and long term usage; and define the contextual parameters along which this filtering is to be done. Hence one key problem addressed in this paper is how to define what data the user needs so that filtering algorithms can be defined to extract the data needed. To that end, in this paper, we present a goal driven, context-aware data filtering, transforming and integration approach for IoT-based systems. We propose a data warehouse-based data model for specifying the data needed at particular levels of granularity and frequency, that drive data storage and representation (aligned with the Semantic Sensor Network ontology). Throughout our paper, we illustrate our ideas via a realistic running example in the smart city domain, with emphasis on traffic management, and also present a proof of concept prototype.

  • IN
  • AU
  • IBM (IN)
  • Univ_Wollongong (AU)
Data keywords
  • internet of things
  • big data
  • ontology
  • semantic
  • data warehouse
  • data model
  • cloud based
Agriculture keywords
  • agriculture
Data topic
  • big data
  • information systems
  • modeling
  • sensors
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.