e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


Mapping the research on aquaculture. A bibliometric analysis of aquaculture literature


Research on aquaculture is expanding along with the exceptional growth of the sector and has an important role in supporting even further the future developments of this relatively young food production industry. In this paper we examined the aquaculture literature using bibliometrics and computational semantics methods (latent semantic analysis, topic model and co-citation analysis) to identify the main themes and trends in research. We analysed bibliographic information and abstracts of 14,308 scientific articles on aquaculture recorded in Scopus. Both the latent semantic analysis and the topic model indicate that the broad themes of research on aquaculture are related to genetics and reproduction, growth and physiology, farming systems and environment, nutrition, water quality, and health. The topic model gives an estimate of the relevance of these research themes by single articles, authors, research institutions, species and time. With the co-citation analysis it was possible to identify more specific research fronts, which are attracting high number of co-citations by the scientific community. The largest research fronts are related to probiotics, benthic sediments, genomics, integrated aquaculture and water treatment. In terms of temporal evolution, some research fronts such as probiotics, genomics, sea-lice, and environmental impacts from cage aquaculture, are still expanding while others, such as mangroves and shrimp farming, benthic sediments, are gradually losing weight. While bibliometric methods do not necessarily provide a measure of output or impact of research activities, they proved useful for mapping a research area, identifying the relevance of themes in the scientific literature and understanding how research fronts evolve and interact. By using different methodological approaches the study is taking advantage of the strengths of each method in mapping the research on aquaculture and showing in the meantime possible limitations and some directions for further improvements.

  • IT
  • European_Commission (IT)
Data keywords
  • semantic
Agriculture keywords
  • farming
Data topic
  • modeling
  • semantics
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
    Powered by Lodex 8.20.3
    logo commission europeenne
    e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
    Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.