e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page


SNP-based analysis of genetic diversity in anther-derived rice by whole genome sequencing


Background: Anther culture has advantage to obtain a homozygous progeny by induced doubling of haploid chromosomes and to improve selection efficiency for invaluable agronomical traits. Therefore, anther culturing is widely utilized to breed new varieties and to induce genetic variations in several crops including rice. Genome sequencing technologies allow the detection of a massive number of DNA polymorphism such as SNPs and Indels between closely related cultivars. These DNA polymorphisms permit the rapid identification of genetic diversity among cultivars and genomic locations of heritable traits. To estimate sequence diversity derived from anther culturing, we performed whole-genome resequencing of five Korean rice accessions, including three anther culture lines (BLB, HY-04 and HY-08), their progenitor cultivar (Hwayeong), and an additional japonica cultivar (Dongjin). Results: A total of 1,165 x 10(6) raw reads were generated with over 58x coverage that detected 1,154,063 DNA polymorphisms between the Korean rice accessions and Nipponbare. We observed that in Hwayeong and its progenies, 0.64 SNP was found per one kb of Nipponbare genome, while Dongjin, bred by a conventional breeding method, had a lower number of SNPs (0.45 SNP/kb). Among 1,154,063 DNA polymorphisms, 29,269 non-synonymous SNPs located on 30,013 genes and these genes were functionally classified based on gene ontology (GO). We also analyzed line-specific SNPs which were estimated 1 similar to 3% of the total SNPs. The frequency of non-synonymous SNPs in each accession ranged from 26 SNPs in Hwayeong to 214 SNPs in HY-04. Conclusions: The genetic difference we detected between the progenies derived from anther culture and their mother cultivar is due to somaclonal variation during tissue culture process, such as karyotype change, chromosome rearrangement, gene amplification and deletion, transposable element, and DNA methylation. Detection of genome-wide DNA polymorphisms by high-throughput sequencer enabled to identify sequence diversity derived from anther culturing and genomic locations of heritable traits. Furthermore, it will provide an invaluable resource to identify molecular markers and genes associated with diverse traits of agronomical importance.

  • KR
  • RDA_Rural_Dev_Adm (KR)
  • Gyeongsang_Natl_Univ (KR)
  • Kyung_Hee_Univ (KR)
Data keywords
  • ontology
Agriculture keywords
  • agronomy
Data topic
  • big data
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • RDA_Rural_Dev_Adm (KR)
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.