e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Genome-Wide Identification and Evolutionary Analysis of the Animal Specific ETS Transcription Factor Family

en
Abstract

The ETS proteins are a family of transcription factors (TFs) that regulate a variety of biological processes. We made genome-wide analyses to explore the classification of the ETS gene family. We identified 207 ETS genes which encode 321 ETS TFs from ten animal species. Of the 321 ETS TFs, 155 contain only an ETS domain, about 50% contain a ETS_PEA3_N or a SAM_PNT domain in addition to an ETS domain, the rest ( only four) contain a second ETS domain or a second ETS_PEA3_N domain or an another domain (AT_hook or DNA_pol_B). A Neighbor-Joining phylogenetic tree was constructed using the amino acid sequences of the ETS domain of the ETS TFs. The results revealed that the ETS genes of the ten species can be divided into two distinct groups. Group I contains one nematode ETS gene and 18 vertebrate animal ETS genes. Group II contains the majority of the ETS TFs and can be further divided into eleven subgroups. The sequence motifs outside the DNA-binding domain and the conservation of the exon-intron structural patterns of the ETS TFs in human, cattle, and chicken further support the phylogenetic classification among these ETS TFs. Extensive duplication of the ETS genes was found in the genome of each species. The duplicated ETS genes account for similar to 69% of the total of ETS genes. Furthermore, we also found there are ETS gene clusters in all of the ten animal species. Statistical analysis of the Gene Ontology annotations of the ETS genes showed that the ETS proteins tend to be related to RNA biosynthetic process, biopolymer metabolic process and macromolecule metabolic process expected from the common GO categories of transcriptional factors. We also discussed the functional conservation and diversification of ETS TFs.

en
Year
2009
en
Country
  • CN
Organization
  • China_Agr_Univ_CAU (CN)
Data keywords
  • ontology
en
Agriculture keywords
  • cattle
en
Data topic
  • big data
en
SO
EVOLUTIONARY BIOINFORMATICS
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • China_Agr_Univ_CAU (CN)
uid:/M5KMT17R
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.