e-infrastructure Roadmap for Open Science in Agriculture

A bibliometric study

The e-ROSA project seeks to build a shared vision of a future sustainable e-infrastructure for research and education in agriculture in order to promote Open Science in this field and as such contribute to addressing related societal challenges. In order to achieve this goal, e-ROSA’s first objective is to bring together the relevant scientific communities and stakeholders and engage them in the process of coelaboration of an ambitious, practical roadmap that provides the basis for the design and implementation of such an e-infrastructure in the years to come.

This website highlights the results of a bibliometric analysis conducted at a global scale in order to identify key scientists and associated research performing organisations (e.g. public research institutes, universities, Research & Development departments of private companies) that work in the field of agricultural data sources and services. If you have any comment or feedback on the bibliometric study, please use the online form.

You can access and play with the graphs:

Discover all records
Home page

Title

Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes

en
Abstract

Background: Black pearl farming is based on culture of the blacklip pearl oyster Pinctada margaritifera (Mollusca, lophotrochozoa), a protandrous hermaphrodite species. At first maturation, all individuals are males. The female sex appears progressively from two years old, which represents a limitation for broodstock conditioning for aquaculture production. In marine mollusks displaying hermaphroditic features, data on sexual determinism and differentiation, including the molecular sex determining cascade, are scarce. To increase genomic resources and identify the molecular mechanisms whereby gene expression may act in the sexual dimorphism of P. margaritifera, we performed gonad transcriptome analysis. Results: The gonad transcriptome of P. margaritifera was sequenced from several gonadic samples of males and females at different development stages, using a Next-Generation-Sequencing method and RNAseq technology. After Illumina sequencing, assembly and annotation, we obtained 70,147 contigs of which 62.2% shared homologies with existing protein sequences, and 9% showed functional annotation with Gene Ontology terms. Differential expression analysis identified 1,993 differentially expressed contigs between the different categories of gonads. Clustering methods of samples revealed that the sex explained most of the variation in gonad gene expression. K-means clustering of differentially expressed contigs showed 815 and 574 contigs were more expressed in male and female gonads, respectively. The analysis of these contigs revealed the presence of known specific genes coding for proteins involved in sex determinism and/or differentiation, such as dmrt and fem-1 like for males, or foxl2 and vitellogenin for females. The specific gene expression profiles of pmarg-fem1-like, pmarg-dmrt and pmarg-foxl2 in different reproductive stages (undetermined, sexual inversion and regression) suggest that these three genes are potentially involved in the sperm-oocyte switch in P. margaritifera. Conclusions: The study provides a new transcriptomic tool to study reproduction in hermaphroditic marine mollusks. It identifies sex differentiation and potential sex determining genes in P. margaritifera, a protandrous hermaphrodite species.

en
Year
2014
en
Country
  • FR
Organization
  • Inra (FR)
  • IFREMER (FR)
  • Univ_Polynesie_Francaise (FR)
Data keywords
  • ontology
en
Agriculture keywords
  • farming
en
Data topic
  • big data
  • information systems
  • semantics
en
SO
BMC GENOMICS
Document type

Inappropriate format for Document type, expected simple value but got array, please use list format

Institutions 10 co-publis
  • Inra (FR)
uid:/MF0DFWM1
Powered by Lodex 8.20.3
logo commission europeenne
e-ROSA - e-infrastructure Roadmap for Open Science in Agriculture has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 730988.
Disclaimer: The sole responsibility of the material published in this website lies with the authors. The European Union is not responsible for any use that may be made of the information contained therein.